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An approximate solution is given for the problem of steady-state
temperature and thermal-stress distribution in a rhin cylindrical
shell partially filled with a liquid. Radiative heat transfer is taken
into account,

Consider the steady-state convective heating of a
thin vertical cylindrical shell partially filled with
liquid to a constant or slowly varying level. Let the
temperature of the outer diathermic surroundings
be Tg, and assume that the film coefficients between
the surroundings and the shell h and between the
shell and the liquid hy, as well as the physical
properties of the shell, are uniform and independent
of temperature. The shell is assumed to be gray
with respect to radiation and sufficiently long for
end effects to be negligible. The liquid is black
with respect to radiation and has a constant tempera-
ture T Under these assumptions, taking account of
the internal radiative heat transfer in the shell,
we obtain the heat-balance equations for the shell:
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The integral equation of radiative transfer (3) is a
Fredholm equation of the second kind with a symmetric

kernel [1], which, in the case of a circular cylinder,
can be represented in the form [2, 3]
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It is known [3], that the kernel (5) of the integral
equation can be approximated with sufficient ac-
curacy by the function exp (—2| & — 7},
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so that the integral (6) becomes

jm. Wdn= jexp [—2@E—n]dn=

expl—2E—mn)] E>n. 6"

A
2
Replacing (5) and (6) in equation (3) by their ap~
proximations (5') and (6'), we obtain
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Differentiating (3') twice and subtracting 4q(§) from
d?q(£)/d£?, we obtain the differential equation for

a(é),
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The differential equation (7) is equivalent to the in-

tegral equation (3') and can be used as an approxi-
mation to equation (3). The boundary conditions
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for (7) can be obtained by satisfying the integral
equation (3') at two points. At £ = 0 we have
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In the special case when t; = ® = const (® = T/T
the solution of (7) with the boundary conditions
(8), (9) is
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This solution holds in the case of a semi-infinite
uniformly heated cylindrical shell radiating into
space (Tf = 0) or toward a perfectly black bottom
with the temperature T;. We see that the "edge"
of the shell (£ = 0) loses the net radiative heat flux
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and the attenuation length of quet(x) is approxi-
mately D/y/¢.

Consider now the system of differential equa-
tions (1), (2), (7) with the boundary conditions
(4), (8), (9). It can be easily seen that in the ab-
sence of radiation (o = 0) the solution is
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Using the collocation method, we shall seek an
approximate solution of the system (1), (2) in the
form (11), where ©,, ©, are the steady-state tem-
peratures at + %, and —=, given by

1—8,—0o81=0, | +mt; — (1+m)6,—aB3=0. (12)

The constants 4, ¢, vy, ¥, are determed by the two
compatability conditions at £ = 0 (4), which yield
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and the two conditions requiring that equations (1),
(2) be satisfied at £ = 0. To write down the latter
conditions in explicit form, we must first solve
equation (7) for t; (£§) as given by (11). Taking
account of (9) and assuming n?y? # 4¢,n = 1,2,3,4,
we have
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where C is determined by (8),
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Substituting t(£) from (11) and q(£) from (14) into
equations (1) and (2) for £ = 0, we obtain the non-
linear algebraic equations fot the constants ¢, ¢,
'Yii 72—
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Thus, with ©, and 6, determined by (12), we have
4 algebraic equations (13), (16) for ¢4, ¢4, ¥4, Vo
Solving these equations numerically (e.g. by suc-
cessive approximations), we obtain an approximate
temperature profile in the shell in the form of
equation (11), which for o = 0 reduces to the exact
radiationless solution.
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In the case vy, v, >> 1, which is the most interest-
ing one from the practical point of view, equations
(16) yield
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The intersection of the two curves v% = f; ($,) and
Y= ¢, (8;), 0 <8, <@ ~ ©,determines v,, ¥,, and
hence, with (18), v,, &,.

In the case when the heat transfer on the liquid
side predominates, m » 1, (12), (17), and (18) can
be approximated by
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and the temperature profile in the shell is then
L(g)= 0, — (6, —t)exp(—y&) £E>0,
(20)
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where 0, is determined by the first equation in (12).
Using the temperature profile (11), we can find

the steady-state thermal stresses produced in the

shell by the nonuniform heating. The deflection of

a thin cylindrical shell in an axisymmetric tem-

perature field U (§) = 2w(§)/D~Tg is determined

within an additive constant by the equation {4]
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The moments and forces are then
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Substituting t(£) from (11) into (21) and solving this
equation, we obtain
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Thus, thermal radiation can have a significant
effect (which increases with the dimensionless
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parameter 0) on the temperature and thermal-
stress distribution in the shell.

Using an analogous method, one can obtain also
the approximate solution for the case when the
liquid level varies at a constant speed.

NOTATION

T) absolute temperature; x) coordinate; q,et) net
heat flux lost by the shell by internal radiation; h)
heat transfer coefficient; A) thermal conductivity;
¢) emissivity; c¢y) Stefan-Boltzmann's constant; D,
53 diameter and thickness of shell; w) deflection
of shell; E) Young's modulus; v) Poisson's ratio;

) linear coefficient of expansion; M, Q, NS) moment

and forces in the shell.
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